Q	uesti	ion	er	Mark	Guidance		
1	(a)		2NaOH + Cl ₂ → NaClO + NaCl + H ₂ O ✓	1	ALLOW NaOCI IGNORE state symbols		
	(b)	(i)	Sodium chlorate(V) ✓	1	ALLOW sodium chlorate V DO NOT ALLOW sodium chlorate 5		
		(ii)			USE annotations with ticks, crosses, con, ECF, etc for this part.		
			Cl in NaClO ₃ is (+)5 AND Cl in NaClO ₄ is (+)7 AND Cl in NaCl is −1 ✓	1	ALLOW 5+, 7+ 1− Look for oxidation numbers seen above equation. DO NOT ALLOW Cl¯ in NaCl		
			Chlorine has been both oxidised and reduced OR The oxidation number of chlorine has increased AND decreased ✓	1	The second and third marking points must refer to chlorine ALLOW 'it' for 'chlorine' if oxidation numbers of chlorine are given ALLOW CI for 'chlorine' DO NOT ALLOW CI ₂ for 'chlorine'		
			Chlorine has been oxidised from (+)5 to (+)7 AND chlorine has been reduced from (+)5 to −1 ✓ (These points would secure marking points 2 and 3) 4NaClO ₃ → 3NaClO ₄ + NaCl +5 -7 -1 This diagram gets all 3 marks oxidation reduction	1	ALLOW 'correct' references to oxidation and reduction even if based on incorrect oxidation numbers of chlorine IGNORE references to electron loss / gain if correct. DO NOT ALLOW 3rd mark for reference to electron loss/gain If oxidation numbers are correct, ALLOW 1 mark for 'chlorine is oxidised to form NaClO ₄ ' ALLOW 1 mark for 'chlorine is reduced to form NaCl' ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' whether or not chlorine is mentioned		
	(c)	(i)	Chlorinated hydrocarbons are carcinogens OR toxic OR Chlorine is toxic OR poisonous ✓	1	ALLOW CH ₃ Cl for 'chlorinated hydrocarbons' IGNORE 'harmful' IGNORE 'carcinogenic' for chlorine		
			(Chlorine) kills bacteria OR 'kills germs' 'kills micro-organisms' OR 'makes water safe to drink' OR 'sterilises water' OR 'disinfects' ✓	1	DO NOT ALLOW 'antiseptic' ALLOW 'to make water potable' ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water' IGNORE 'cleans water'		

	Ques	tion	er	Mark	Guidance
1	(c)	(ii)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of CH ₃ Cl AND lone pairs correct on Cl H C Cl	1	Must be 'dot-and cross' ALLOW different symbol for third 'type' of electron Circles for outer shells not needed IGNORE inner shells Non-bonding electrons of chlorine do not need to be shown as pairs
		(iii)	Tetrahedral OR tetrahedron ✓	1	
	(d)		Add AgNO ₃ (aq) OR Ag ⁺ (aq) OR silver nitrate OR AgNO ₃ ✓	1	ALLOW Ag ⁺ (aq) seen in the ionic equation IGNORE references to nitric acid IGNORE references to adding water or dissolving the brine DO NOT ALLOW references to any other additional reagent as well as the silver nitrate for the first mark
			White precipitate ✓	1	White AND precipitate required DO NOT ALLOW hint of any other colour IGNORE 'turns grey' ALLOW solid as alternative for precipitate
			$Ag^+ + Cl^- \rightarrow AgCl \checkmark$	1	IGNORE states
			Add dilute NH₃ and precipitate (completely) dissolves OR disappears ✓	1	DO NOT ALLOW conc. NH ₃ DO NOT ALLOW any mention of incomplete dissolving ALLOW (for 4th mark) 'add Cl ₂ (aq)' AND 'no colouration would be seen' OR 'no change' OR 'no reaction'
			Total	13	

uest	ion	Expected Answers	Marks	Additional Guidance
(a)			3	Lattice must have at least 2 rows of positive ions If a metal ion is shown (e.g. Na ⁺), it must have the correct charge
		regular arrangement of labelled + ions with some attempt to show electrons ✓		ALLOW for labels: + ions, positive ions, cations If '+' is unlabelled in diagram, award the label for '+' from a statement of 'positive ions' in text below DO NOT ALLOW as label or text positive atom OR protons OR nuclei
		scattering of labelled electrons between other species OR a statement anywhere of delocalised electrons (can be in text below) ✓		ALLOW e ⁻ OR e as label for electron DO NOT ALLOW '-' as label for electron
		metallic bond as (electrostatic) attraction between the electrons and the positive ions ✓		
(b)	(i)	4 Na + O ₂ \longrightarrow 2 Na ₂ O OR 2 Na + ½ O ₂ \longrightarrow Na ₂ O \checkmark	1	ALLOW correct multiples including fractions IGNORE state symbols
	(ii)	(electrostatic) attraction between oppositely charged ions√	1	
	(a)	(b) (i)	(a)	(a) (b) (a) (a) (b) (c) (b) (c) (d) (e) (e) (e) (e) (e) (f) (e) (e

Question	Expected Answers	Marks	Additional Guidance
(iii)	\[\begin{align*} Na \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation Shell circles not required IGNORE inner shell electrons
	Na shown with either 8 or 0 electrons AND O shown with 8 electrons with 6 crosses and 2 dots (or vice versa) ✓ Correct charges on both ions ✓		ALLOW: $2[Na^{+}] \ 2[Na]^{+} \ [Na^{+}]_{2}$ (brackets not required) DO NOT ALLOW $[Na_{2}]^{2+} / [Na_{2}]^{+} / [2Na]^{2+}$ DO NOT ALLOW: $[Na_{2}]^{2+} \ [Na_{2}]^{+} \ [2Na]^{2+} \ [Na]_{2}^{+}$
(c)		5	Throughout this question, 'conducts' and 'carries charge' are treated as equivalent terms.
	sodium is a (good) conductor because it has mobile electrons OR delocalised electrons OR electrons can move ✓		DO NOT ALLOW 'free electrons' for mobile electrons
	sodium oxide does not conduct as a solid ✓		ALLOW poor conductor OR bad conductor 'Sodium oxide only conducts when liquid' is insufficient to award 'solid conductivity' mark
	sodium oxide conducts when it is a liquid ✓ ions cannot move in a solid ✓		ALLOW ions are fixed in place IGNORE electrons IGNORE charge carriers
	ions can move OR are mobile when liquid ✓		IGNORE 'delocalised ions' or 'free ions' for mobile ions Any mention of electrons moving is a CON
	Total	12	

Q	uestion		(er	Marks	Guidance
3	(a)	solid	melting point / °C	type of lattice	2	
		K	6			
		KBr		giant ionic ✓		giant AND ionic required
		H ₂ O		simple molecular ✓		simple AND molecular required ALLOW simple covalent
	(b)	Particle mark	1: static attraction bet	ween)	6	Use annotations with ticks, crosses, ECF etc for this part
			cations AND e ⁻ / e			ALLOW labels from diagrams if not seen in text
		Particle mark		petween) oppositely OR		ALLOW K ⁺ and Br ⁻ for 'oppositely charged ions'
			D negatively charg			DO NOT ALLOW 'atoms' in KBr
		positive ions a	c bonding OR K ha and electrons bonding OR KBr h	as attraction between		IGNORE 'metallic lattice' for metallic bonding' AND 'ionic lattice' for 'ionic bonding' DO NOT ALLOW , for forces mark, incorrect forces for K and KBr, such as covalent, van der Waals' seen anywhere in the response
			argod forto			IGNORE references to van der Waals' forces in water
		In H₂O, Forces mark: hydrogen bor Particles mar (Between) mo	nding √ k (QWC):			ALLOW 'intermolecular' OR 'molecular' for particles mark <i>Quality of Written Communication</i> : 'molecules' OR 'intermolecular' OR 'molecular' spelt correctly once and used in context for the fifth marking point
		Order of strer	ngth of forces: KBr	> K > H₂O g > hydrogen bonding ✓		The order of all three substances OR bonding must be referred to for this mark ALLOW responses which use comparatives such as strong and extremely strong to differentiate strength of forces ALLOW answers that inform KBr > K > H ₂ O IGNORING incorrect forces used above

Question	er	Marks	Guidance
(c)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = $72(.0)$ (cm ³) award 3 marks amount of K = $0.2346 / 39.1$ OR = $6.(00) \times 10^{-3}$ OR $0.006(00)$ mol \checkmark	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below
	amount of $H_2 = \text{(mol of K)} / 2 \text{ OR} = 3.(00) \times 10^{-3} \text{ OR}$ 0.003(00) mol \checkmark		ALLOW mol of K x 0.5 correctly calculated for 2nd mark
	Volume of gas = (mol of H_2) × 24000 OR = 72(.0) (cm ³) \checkmark		ALLOW mol of H ₂ x 24000 correctly calculated for 3rd mark ALLOW 144 (cm³) from 0.006 x 24000 for two marks ALLOW 0.072 from 0.003 x 24 for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2
	Total	11	

	Quest	ion	Answer	Mark	Guidance
4	(a)		The ability of an atom to attract electrons ✓	2	ALLOW 'attraction of an atom for electrons' ALLOW 'pull' for 'attract' DO NOT ALLOW 'element' for 'atom'
			in a covalent bond ✓		ALLOW 'shared pair' or 'bond(ing) pair' for 'covalent bond'
	(b)		$\delta^{+}N-F\delta^{-}$ AND $\delta^{-}N-Br\delta^{+}$ \checkmark	1	ALLOW d+ / d- DO NOT ALLOW + / –
	(c)	(i)	octahedral OR octahedron ✓	1	
		(ii)	Diagram of BF ₃ showing three 'dot-and-cross' bonds between B and F and all F atoms with complete octet of electrons ✓ Diagram of NH ₃ showing three 'dot-and-cross' bonds between N and H and N atom has a lone pair ✓ Marking points 3, 4 and 5 may be awarded independently	5	Use annotations with ticks, crosses ECF etc. for this part ALLOW diagrams without circles Must be 'dot-and-cross'
			electron pairs repel ✓		IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel' ALLOW 'bonds repel'
			NH₃ has one lone pair and three bonding pairs of electrons AND lone pair of electrons repels more than bonding pairs ✓		ALLOW 'bonds' for 'bonding pairs' ALLOW 'four pairs' in place of 'one lone pair and three bonding pairs'
			BF₃ has three (bonding) pairs of electrons (which repel equally) ✓		The third marking point can be gained from statements seen in fourth or fifth marking points

	Question		er	Mark	Guidance
4	(c)	(iii)	BF ₃ is symmetrical ✓ The dipoles cancel out ✓	2	IGNORE 'polar bonds cancel' IGNORE 'charges cancel'
			Total	11	

C	Questi	on	Expected Answers	Marks	Additional Guidance
5	(a)	(i)	(Electrostatic) attraction between oppositely charged ions . ✓	1	IGNORE force IGNORE references to transfer of electrons MUST be ions, not particles
		(ii)	Mg shown with either 8 of 0 electrons AND S shown with 8 electrons with 2 crosses and 6 dots (or vice versa) ✓	2	Mark charges on ions and electrons independently For first mark, if 8 electrons are shown around the Mg then 'extra electrons' around S must match the symbol chosen for electrons around Mg
			Correct charges on both ions ✓		Shell circles not required
] ²⁺ [———————————————————————————————————		IGNORE inner shell electrons
					Brackets are not required
	(b)	(i)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of the F ₂ O ✓ Lone pairs correct on O and both F atoms ✓	2	Must be 'dot-and-cross' circles for outer shells NOT needed IGNORE inner shells
			AT THE		Non-bonding electrons of O do not need to be shown as pairs
			F		Non-bonding electrons of F do not need to be shown as pairs
		(ii)	Predicted bond angle 104–105 ^o . ✓	3	ALLOW 103–105° (103° is the actual bond angle)
			There are 2 bonded pairs and 2 lone pairs ✓ Lone pairs repel more than bonded pairs ✓		ALLOW responses equivalent to second marking point. e.g. There are 4 pairs of electrons and 2 of these are lone pairs ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair ALLOW LP repel more if bonded pairs have already been mentioned

Questi	on	Expected Answers	Marks	Additional Guidance
(c)	(i)	(At least) two NH ₃ molecules with correct dipole shown with at least one H with δ^+ and one N with δ^- ✓	3	DO NOT ALLOW first mark for ammonia molecules with incorrectione pairs DO NOT ALLOW first mark if H ₂ O, NH ₂ or NH is shown
		(Only) one hydrogen bond from N atom on one molecule to a H atom on another molecule ✓		ALLOW hydrogen bond need not be labelled as long as it clear the bond type is different from the covalent N–H bond
				ALLOW a line (i.e. looks like a covalent bond) as long as it is labelled 'hydrogen bond)
		Lone pair shown on the N atom and hydrogen bond must hit the lone pair ✓		ALLOW 2-D diagrams
		Hydrogen bond $ \delta_{+} \qquad \delta_{-} $ $ \delta_{+} \qquad \delta_{+} $		ALLOW two marks if water molecules are used. One awarded for a correct hydrogen bond and one for the involvement of lone pair
	(ii)	Liquid H₂O is denser than solid ✓ In solid state H₂O molecules are held apart by hydrogen bonds OR ice has an open lattice ✓	2	ORA ALLOW ice floats for first mark
		OR		
		H ₂ O has a relatively high boiling point OR melting point ✓		ALLOW higher melting OR boiling point than expected DO NOT ALLOW H ₂ O has a high melting / boiling point
		(relatively strong) hydrogen bonds need to be broken OR a lot of energy is needed to overcome hydrogen bonds OR hydrogen bonds are strong ✓		ALLOW other properties caused by hydrogen bonding not mentioned within the specification E.g. high surface tension – strong hydrogen bonds on the surface
		Total	13	